Given root of polynomial function x=∛28
g(2)=x3 -28=0
Applying Newton's method
x_(n+1) = x_n - (g(x_n)) / (g'(x_n))
For c₁ ⇒ c₁ = c₀ - (g(c₀)) / (g'(c₀))
Thus, c₀ =3
So, g'(3)=27
g(3)=27-28=-1
c₁ = (3-(-1)) / (27) = (81+1) / (27)
c₁ = (82)/(27)
Given root of polynomial function x=∛28
g(2)=x3 -28=0
Applying Newton's method
x_(n+1) = x_n - (g(x_n)) / (g'(x_n))
For c₁ ⇒ c₁ = c₀ - (g(c₀)) / (g'(c₀))
Thus, c₀ =3
So, g'(3)=27
g(3)=27-28=-1
c₁ = (3-(-1)) / (27) = (81+1) / (27)
c₁ = (82)/(27)
Didn't find the answer you were looking for?