The solution is as follows;
You have number 0.833333.... This number is equal to some fraction; call this fraction "x". That is:
X = 0.833333...
There is one repeating digit in this decimal, so multiply x by "1" followed by one zero; that is, multiply by 10:
10x = 8.33333....
Now subtract the former from the latter:
10x=8.33333
x = 0.833333
------
9x = 7.50000
That is, 9x = 7.5 = 75/10 = 15/2. Solving this, we get x = 15/18. (You can verify this by plugging "15 ÷ 18" into your calculator and seeing that you get "0.833333..." for an answer.)
You have number 0.833333.... This number is equal to some fraction; call this fraction "x". That is:
X = 0.833333...
There is one repeating digit in this decimal, so multiply x by "1" followed by one zero; that is, multiply by 10:
10x = 8.33333....
Now subtract the former from the latter:
10x=8.33333
x = 0.833333
------
9x = 7.50000
That is, 9x = 7.5 = 75/10 = 15/2. Solving this, we get x = 15/18. (You can verify this by plugging "15 ÷ 18" into your calculator and seeing that you get "0.833333..." for an answer.)