To find 'c', solve f'(x)=0
⇒ (x² − 1) × 1 + 2x(x − 2) = 0
⇒ x²− 1 + 2x² − 4x = 0
⇒ 3x2 − 4x−1 = 0
It's a quadratic equation so, solve it using quadratic formula
⇒ [4±√16-(4)(3)(-1)] / (2(3))
⇒x = (2±√7)/(3)
⇒x = (2+√7)/(3) and x = (2-√7)/(3)
x = (2+ √7)/(3) = 1.55 ∈(1,2]
x = (2-√7)/(3) = -.215 ∉(1,2]
Hence, c= (2+√7)/(3) satisfies the conclusion of Rolle's theorem for the given function